On The Properties of Belief Tracking for Online Contingent Planning using Regression

نویسندگان

  • Ronen I. Brafman
  • Guy Shani
چکیده

Planning under partial observability typically requires some representation of the agent’s belief state – either online to determine which actions are valid, or offline for planning. Due to its potential exponential size, efficient maintenance of a belief state is, thus, a key research challenge in this area. The state-of-the-art factored belief tracking (FBT) method addresses this problem by maintaining multiple smaller projected belief states, each involving only a subset of the variable set. Its complexity is exponential in the size of these subsets, as opposed to the entire variable set, without jeopardizing completeness. In this paper we develop the theory of regression to serve as an alternative tool for belief-state maintenance. Regression is a well known technique enjoying similar, and potentially even better worst-case complexity, as its complexity depends on the actions and observations that actually took place, rather than all actions and potential observations, as in the FBT method. On the other hand, FBT is likely to have better amortized complexity if the number of queries to the belief state is very large. An empirical comparison of regression with FBT-based belief maintenance is carried out, showing that the two perform similarly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Width and Complexity of Belief Tracking in Non-Deterministic Conformant and Contingent Planning

It has been shown recently that the complexity of belief tracking in deterministic conformant and contingent planning is exponential in a width parameter that is often bounded and small. In this work, we introduce a new width notion that applies to non-deterministic conformant and contingent problems as well. We also develop a belief tracking algorithm for non-deterministic problems that is exp...

متن کامل

Partially Observable Online Contingent Planning Using Landmark Heuristics

In contingent planning problems, agents have partial information about their state and use sensing actions to learn the value of some variables. When sensing and actuation are separated, plans for such problems can often be viewed as a tree of sensing actions, separated by conformant plans consisting of non-sensing actions that enable the execution of the next sensing action. This leads us to p...

متن کامل

Planning in Belief Space with a Labelled Uncertainty Graph

Planning in belief space with a Labelled Uncertainty Graph, LUG, is an approach that uses a very compact planning graph to guide search in the space of belief states to construct conformant and contingent plans. A conformant plan is a plan that transitions (without sensing) all possible initial states through possibly non-deterministic actions to a goal state. A contingent plan adds the ability...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Optimal Observer Path Planning For Bearings-Only Moving Targets Tracking Using Chebyshev Polynomials

In this paper, an optimization problem for the observer trajectory in the bearings-only surface moving target tracking (BOT) is studied. The BOT depends directly on the observability of the target's position in the target/observer geometry or the optimal observer maneuver. Therefore, the maximum lower band of the Fisher information matrix is opted as an independent criterion of the target estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014